Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Michel M. Bélombé, ${ }^{\text {a* Justin }}$

Nenwa, ${ }^{\text {a }}$ Astride L. Kammoe ${ }^{\text {a }}$ and Pierre F. P. Poudeu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Inorganic Chemistry, University of Yaounde I, POB 812 Yaounde, Cameroon, and ${ }^{\mathbf{b}}$ Department of Chemistry, Michigan State University, East Lansing, MI 48823, USA

Correspondence e-mail:
belombe2000@yahoo.fr

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in solvent or counterion
R factor $=0.027$
$w R$ factor $=0.059$
Data-to-parameter ratio $=26.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Hydronium tris(oxamide dioxime- $\kappa^{2} N, N^{\prime}$)nickel(II) triiodide

The title compound, $\left(\mathrm{H}_{3} \mathrm{O}\right)\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{3}\right] \mathrm{I}_{3}$ or $\left(\mathrm{H}_{3} \mathrm{O}\right)$ $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \text { oxado }\right)_{3}\right] \mathrm{I}_{3}$, where H_{2} oxado $=$ oxamide dioxime, contains six $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \text { oxado }\right)_{3}\right]^{2+}$ cations, six $\mathrm{H}_{3} \mathrm{O}^{+}$cations and eighteen I^{-}anions in the unit cell. The Ni atom lies on a position of site symmetry 32 and the hydronium cation is disordered on a position of site symmetry $\overline{3}$. The crystal packing is consolidated by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds that link the cations along c into positively charged pillars. The proton balancing the charge of the iodide ions is attached to the water molecule of crystallization, thus forming a hydronium ion.

Comment

Transition metal complex cations of the form $\left[M\left(\mathrm{H}_{2} \text { oxado }\right)_{3}\right]^{n+}$, where $M=\operatorname{metal}(\mathrm{II})$ or metal(III), $n=2$ or 3 , and $\mathrm{H}_{2} \mathrm{oxado}=$ oxamide dioxime, are not commonplace in the literature, yet they have great potential as starting blocks that may combine with a wide range of anions to generate interesting multifunctional crystalline materials. Only three salts based on these cations (Bekaroglu et al., 1978; Bélombé et al., 1993; Endres \& Jannack, 1980) appear to have been well characterized so far.

(I)

Our research is aimed at constructing material architectures likely to exhibit combined functionalities such as moleculebased magnetism, optical activity, nanoscale porosity and extended hydrogen bonding within the same system (Bélombé et al., 2003). Thus, we prepared $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{oxado}\right)_{3}\right] \mathrm{I}_{3}$ (Bélombé et al., 1993) - which crystallizes with the same structure as the present material - and two isomorphous salts, $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{OX}-\right.\right.$ ado $\left.)_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{Oxado}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}$. We used these salts as a source of complex cations, and we produced the first salt of the series with linear chains of alternating $\left[M\left(\mathrm{H}_{2} \text { oxado }\right)_{3}\right]^{3+}$ cations and $\left[M^{\prime}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ anions, viz. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \text { oxado }\right)_{3}\right]-$

Figure 1
(A) The molecular formula unit of (I) with atom numbering, showing hydrogen bonding (dashed lines) of I atoms to the amino groups of the ligands, with atom O 2 on a site of symmetry $\overline{3}$ (95% displacement ellipsoids, spheres of arbitrary radii for the H atoms). (B) Environment of O2 sites.
$\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Bélombé et al., 2006; Nenwa, 2004). We now report the structure of the title compound, (I), for which an earlier assignment of the site of the charge-balancing proton (Endres, 1985) turns out to be incorrect.

The molecular formula unit of (I) is depicted in Fig. 1, obviating the $C 3$ symmetry of the lattice and involving disorder of the $\mathrm{H}_{3} \mathrm{O}^{+}$ion, the O atom of which is located on a site of symmetry $\overline{3}$. The Ni atom lies on a position of site symmetry 32 . Selected bond lengths are listed and compared with previous values in Table 1. The slight differences in the $\mathrm{Ni}-\mathrm{N}$ distances in this study compared with the values in the earlier study are due to the fact that the present work was carried out at 100 K , whereas the earlier study was conducted at room temperature. Selected torsion angles summarized in Table 2 underline the non-coplanarity of the ligand atoms with the central Ni. Fig. 2 depicts the crystal packing, illustrating the stacking of the complex and the hydronium cations into positively charged pillars along c. It reveals a hexagonal sublattice of iodide ions 'encapsulating' each pillar. It is also seen that next-neighbour complexes are rotated by an angle of 60° relative to each other. The view along [001] of a pillar (Fig. 3) shows intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with a regular $\mathrm{Ni} \cdots \mathrm{Ni}$ spacing of 7.244 (3) $\AA(c / 2)$.

It is worth noting that the linear-chain ordering of positive complex entities observed here is rather an unusual selfassembly mode, as such entities would normally be expected to be mutually repulsive. Obviously, however, the stabilizing effect of the long-range hydrogen bonding far overwhelms the mutual repulsion in the present case.

Experimental

Compound (I) was obtained according to the literature method of Endres (1985).

Crystal data

$\left(\mathrm{H}_{3} \mathrm{O}\right)\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{3}\right] \mathrm{I}_{3}$
$M_{r}=812.76$
Trigonal, $R \overline{3} c$
$a=16.105$ (2) \AA
$c=14.488(3) \AA$
$V=3254.4(9) \AA^{3}$
$Z=6$
$D_{x}=2.488 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=5.22 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Hexagonal prism, pink-red
$0.11 \times 0.09 \times 0.05 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: numerical [X-RED32 (Stoe \& Cie, 2001); crystal description using FACEIT (Stoe \& Cie, 2002); optimization using equivalent reflections (X-SHAPE; Stoe \& Cie, 1999)] $T_{\text {min }}=0.450, T_{\text {max }}=0.678$

13652 measured reflections 1557 independent reflections 1461 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=35.1^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=\left\{1-\exp \left[-10(\sin \theta / \lambda)^{2}\right]\right\} / \\
& \quad\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+30.9996 P+(0.0144 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.49 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-1.19 \mathrm{e}^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \quad \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.00016(5)
\end{aligned}
$$

Table 1
Selected bond distances (\AA) involving non H atoms in (I).
Values in square brackets are from Endres (1985).

$\mathrm{Ni}-\mathrm{N} 1^{\mathrm{i}-\mathrm{v}}$	$2.044(2)$	$[2.055(5)]$
$\mathrm{N} 1-\mathrm{C}$	$1.304(3)$	$[1.293(8)]$
$\mathrm{N} 1-\mathrm{O} 1$	$1.420(2)$	$[1.416(7)]$
$\mathrm{N} 2-\mathrm{C}$	$1.325(3)$	$[1.310(9)]$
$\mathrm{C}-\mathrm{C}^{\text {iii }}$	$1.494(4)$	$[1.502(8)]$

Symmetry codes: (i) $-y, x-y, z$; (ii) $-x+y,-x, z$; (iii) $y, x,-z-\frac{1}{2}$; (iv)
$x-y,-y,-z-\frac{1}{2}$; (v) $-x,-x+y,-z-\frac{1}{2}$.

Table 2
Selected torsion angles (${ }^{\circ}$) for (I).

$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C}-\mathrm{N} 2$	$-6.6(3)$	$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C}-\mathrm{C}^{\mathrm{iii}}$	$174.4(2)$
$\mathrm{Ni}-\mathrm{N} 1-\mathrm{C}-\mathrm{N} 2$	$-174.0(2)$	$\mathrm{Ni}-\mathrm{N} 1-\mathrm{C}-\mathrm{C}^{\mathrm{iii}}$	$6.97(3)$

Symmetry code: (iii) $y, x,-z-\frac{1}{2}$.

Table 3
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{I}^{\text {vi }}$	$0.92(2)$	$2.83(3)$	$3.717(2)$	$164(4)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{I}$	$0.91(3)$	$2.78(3)$	$3.639(2)$	$158(4)$
$\mathrm{O} 2-\mathrm{H} 3 \cdots \mathrm{O}^{\text {vii }}$	$0.89(3)$	$1.64(6)$	$2.400(2)$	$142(9)$
Symmetry codes: $(\mathrm{vi})-y+\frac{2}{3}, x-y+\frac{1}{3}, z+\frac{1}{3} ;($ vii $)-x+y,-x, z$				

The H atoms attached to O 2 are disordered over two sites of equal occupancy. All H atoms were initially located in a difference Fourier map and were refined using distance restraints of $\mathrm{N}-\mathrm{H}=0.95$ (3) \AA

Figure 2
A projection of the structure of (I) down [001], illustrating the stacking of complexes into pillars. Ni atoms are green, I atoms purple, N atoms blue, O atoms yellow, C atoms white and H atoms grey.
and $\mathrm{O}-\mathrm{H}=0.84(3) \AA . \mathrm{H}$-atom coordinates refined to the values reported in the archived CIF, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$ for $\mathrm{H} 2 A$ and $\mathrm{H} 2 B$, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ for H 1 and H 3 . The highest peak and deepest hole in the final difference map are $1.46 \AA$ from atom $\mathrm{H} 2 B$ and $1.26 \AA$ from N 1 , respectively.

Data collection: WinXpose (Stoe \& Cie, 2002); cell refinement: RECIPE (Stoe \& Cie, 2002); data reduction: INTEGRATE (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 and DIAMOND.

The authors thank Professor Mercouri G. Kanatzidis at Michigan State University for the use of his group X-ray facilities.

Figure 3
A view of a pillar, perpendicular to [001], showing $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines) between $\mathrm{H}_{3} \mathrm{O}^{+}$and adjacent $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \text { oxado }\right)_{3}\right]^{2+}$ ions.

References

Bekaroglu, Ö., Sarisaban, S., Koray, A. R., Nuber, B., Weidenhammer, K., Weiss, J. \& Ziegler, M. L. (1978). Acta Cryst. B34, 3591-3593.
Bélombé, M. M., Jokwi, I., Ngameni, E., Roux, R. \& Nuber, B. (1993). Z. Naturforsch. Teil B, 48, 1719-1722.
Bélombé, M. M., Nenwa, J., Mbiangué, Y.-A., Evina Nnanga, G., Mbomékallé, I.-M., Hey-Hawkins, E., Lönnecke, P. \& Majoumo, F. (2003). Dalton Trans. pp. 2117-2118.
Bélombé, M. M., Nenwa, J., Mbiangué, Y.-A., Hey-Hawkins, E., Lönnecke, P. \& Majoumo, F. (2006). In preparation.
Brandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.
Endres, H. (1985). Acta Cryst. C41, 1423-1426.
Endres, H. \& Jannack, T. (1980). Acta Cryst. B36, 2136-2138.
Nenwa, J. (2004). PhD dissertation, University of Yaounde I, Cameroon.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1999). X-SHAPE (Version 1.06). Stoe \& Cie GmbH, Darmstadt, Germany.
Stoe \& Cie (2001). X-RED32. Stoe \& Cie GmbH, Darmstadt, Germany.
Stoe \& Cie (2002). WinXpose, RECIPE, INTEGRATE and FACEIT. Stoe \& Cie GmbH, Darmstadt, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

